Энергия взаимодействия зарядов. Энергия электрического поля. Плотность энергии. Потенциальная энергия взаимодействия двух зарядов Энергия взаимодействия зарядов в электрическом поле

Принцип суперпозиции.

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряжённостей электрических полей, создаваемых в той же точке зарядами в отдельности:

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции . В соответствии с законом Кулона, напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю:

Это поле называется кулоновским. В кулоновском поле направление вектора напряженности зависит от знака заряда Q: если Q больше 0, то вектор напряженности направлен от заряда, если Q меньше 0, то вектор напряженности направлен к заряду. Величина напряжённости зависит от величины заряда, среды, в которой находится заряд, и уменьшается с увеличением расстояния.

Напряженность электрического поля, которую создает заряженная плоскость вблизи своей поверхности:

Итак, если в задаче требуется определить напряженность поля системы зарядов, то надо действовать по следующему алгоритму:

1. Нарисовать рисунок.

2. Изобразить напряженность поля каждого заряда по отдельности в нужной точке. Помните, что напряженность направлена к отрицательному заряду и от положительного заряда.

3. Вычислить каждую из напряжённостей по соответствующей формуле.

4. Сложить вектора напряжённостей геометрически (т.е. векторно).

Потенциальная энергия взаимодействия зарядов.

Электрические заряды взаимодействуют друг с другом и с электрическим полем. Любое взаимодействие описывает потенциальной энергией. Потенциальная энергия взаимодействия двух точечных электрических зарядов рассчитывается по формуле:

Обратите внимание на отсутствие модулей у зарядов. Для разноименных зарядов энергия взаимодействия имеет отрицательное значение. Такая же формула справедлива и для энергии взаимодействия равномерно заряженных сфер и шаров. Как обычно, в этом случае расстояние r измеряется между центрами шаров или сфер. Если же зарядов не два, а больше, то энергию их взаимодействия следует считать так: разбить систему зарядов на все возможные пары, рассчитать энергию взаимодействия каждой пары и просуммировать все энергии для всех пар.

Задачи по данной теме решаются, как и задачи на закон сохранения механической энергии: сначала находится начальная энергия взаимодействия, потом конечная. Если в задаче просят найти работу по перемещению зарядов, то она будет равна разнице между начальной и конечной суммарной энергией взаимодействия зарядов. Энергия взаимодействия так же может переходить в кинетическую энергию или в другие виды энергии. Если тела находятся на очень большом расстоянии, то энергия их взаимодействия полагается равной 0.

Обратите внимание: если в задаче требуется найти минимальное или максимальное расстояние между телами (частицами) при движении, то это условие выполнится в тот момент времени, когда частицы движутся в одну сторону с одинаковой скоростью. Поэтому решение надо начинать с записи закона сохранения импульса, из которого и находится эта одинаковая скорость. А далее следует писать закон сохранения энергии с учетом кинетической энергии частиц во втором случае.

В пределах электростатики невозможно дать ответ на вопрос, где сосредоточена энергия конденсатора. Поля и заряды, их образовавшие, не могут существовать обособленно. Их не разделить. Однако переменные поля могут существовать независимо от возбуждавших их зарядов (излучение солнца, радиоволны, …), и они переносят энергию. Эти факты заставляют признать, что носителем энергии является электростатическое поле .

При перемещении электрических зарядов силы кулоновского взаимодействия совершают определенную работу dА . Работа, совершенная системой, определяется убылью энергии взаимодействия -dW зарядов

. (5.5.1)

Энергия взаимодействия двух точечных зарядов q 1 и q 2 , находящихся на расстоянии r 12 , численно равна работе по перемещению заряда q 1 в поле неподвижного заряда q 2 из точки с потенциалом в точку с потенциалом :

. (5.5.2)

Удобно записать энергию взаимодействия двух зарядов в симметричной форме

. (5.5.3)

Для системы из n точечных зарядов (рис. 5.14) в силу принципа суперпозиции для потенциала, в точке нахождения k -го заряда, можно записать:

Здесь φ k , i - потенциал i -го заряда в точке расположения k -го заряда. В сумме исключен потенциал φ k , k , т.е. не учитывается воздействие заряда самого на себя, равное для точечного заряда бесконечности.

Тогда взаимная энергия системы n зарядов равна:

(5.5.4)

Данная формула справедлива лишь в случае, если расстояние между зарядами заметно превосходит размеры самих зарядов.

Рассчитаем энергию заряженного конденсатора. Конденсатор состоит из двух, первоначально незаряженных, пластин. Будем постепенно отнимать у нижней пластины заряд dq и переносить его на верхнюю пластину (рис. 5.15).

В результате между пластинами возникнет разность потенциалов При переносе каждой порции заряда совершается элементарная работа

Воспользовавшись определением емкости получаем

Общая работа, затраченная на увеличение заряда пластин конденсатора от 0 до q , равна:

Эту энергию можно также записать в виде

Лекция 2.6.

Энергия взаимодействия зарядов

Рассмотрим систему из двух точечных зарядов. Энергию взаимодействия можно трактовать как энергию первого заряда в поле второго (cм.(2.1.3))

Поскольку оба представления равноправны, энергию взаимодействия этих зарядов можно записать следующим образом

где - i -тый точечный заряд системы, - потенциал поля, созданного всеми остальными зарядами системы, кроме i -того, в точке расположения заряда .

Если заряды распределены непрерывно, то, представляя систему зарядов как совокупность элементарных зарядов и переходя к интегрированию, получим выражение

где - энергия взаимодействия друг с другом элементарных зарядов первого шарика, - энергия взаимодействия друг с другом элементарных зарядов второго шарика, - энергия взаимодействия элементарных зарядов первого шарика с элементарными зарядами второго шарика. Энергии и называют собственными энергиями зарядов и . Энергию называют энергией взаимодействия зарядов и .

Энергия уединенного проводника и конденсатора

Пусть проводник имеет заряд и потенциал . Энергия проводника . Поскольку проводник является эквипотенциальной областью, то потенциал выносится из-под знака интеграла. Окончательно

Энергия конденсатора.

Пусть и - заряд и потенциал положительно заряженной обкладки, а и - соответственно отрицательной. Тогда энергия конденсатора с учетом и запишется

Энергия электрического поля.

Физический смысл энергии конденсатора это не что иное, как энергия электрического поля сосредоточенного внутри него . Получим выражение для энергии плоского конденсатора через напряженность. Будем пренебрегать краевыми эффектами. Воспользуемся формулой , и выражением для емкости плоского конденсатора .



Подынтегральное выражение здесь имеет смысл энергии, заключенной в объеме. Это подводит к важной идее о локализации энергии в самом поле.

Это предположение находит подтверждение в области переменных полей. Именно переменные поля могут существовать независимо от возбудивших их электрических зарядов и распространяться в пространстве в виде электромагнитных волн, которые переносят энергию.

Таким образом, носителем энергии является само поле .

Анализируя последнее выражение, можем ввести объемную плотность энергии, т.е. энергии, заключенной в единице объема

. (2.6.9)

Мы получили (2.6.8) и (2.6.9) в частном случае однородного, изотропного диэлектрика в однородном электрическом поле. В этом случае векторы и сонаправлены и можно записать

Силы взаимодействия электрических зарядов консервативны, следовательно, система электрических зарядов обладает потенциальной энергией.

Пусть даны два точечных неподвижных заряда q 1 и q 2 , находящиеся на расстоянии r друг от друга. Каждый из зарядов в поле другого заряда обладает потенциальной энергией

; , (4.1)

где j 1,2 и j 2,1 – соответственно потенциалы, создаваемые зарядом q 2 в точке нахождения заряда q 1 и зарядом q 1 в точке нахождения заряда q 2 .

, а . (4.3)

Следовательно,

. (4.4)

Для того чтобы в уравнение энергии системы оба заряда входили симметрично, выражение (4.4) можно записать в виде

. (4.5)

Добавляя к системе зарядов последовательно заряды q 3 , q 4 и т.д., можно убедиться, что в случае N зарядов потенциальная энергия системы

, (4.6)

где j i – потенциал создаваемый в точке нахождения q i всеми зарядами, кроме i - го.

При непрерывном распределении зарядов в элементарном объеме dV находится заряд dq = r×dV. Для определения энергии взаимодействия заряда dq можно применить формулу (4.6), перейдя в ней от суммы к интегралу:

, (4.7)

где j – потенциал в точке элемента объема dV.

Надо отметить, что между формулами (4.6) и (4.7) существует принципиальное различие. Формула (4.6) учитывает только энергию взаимодействия между точечными зарядами, но не учитывает энергии взаимодействия элементов заряда каждого из точечных зарядов между собой (собственную энергию точечного заряда). Формула (4.7) учитывает как энергию взаимодействия между точечными зарядами, так и собственную энергию этих зарядов. При расчете энергии взаимодействия точечных зарядов она сводится к интегралам по объему V i точечных зарядов:

, (4.8)

где j i - потенциал в любой точке объема i-го точечного заряда;

j i = j i ¢ + j i с, (4.9)

где j i ¢ - потенциал, созданный другими точечными зарядами в этой же точке;

j i с – потенциал, созданный частями i-го точечного заряда в данной точке.

Так как точечные заряды можно представить сферически симметричными, то

(4.10)

где W ¢ определяется по формуле (4.6).

Значение собственной энергии зарядов зависит от законов распределения зарядов и от величины зарядов. Например, при равномерном сферическом распределении зарядов с поверхностной плотностью s

.

Следовательно,

. (4.11)

Из формулы (4.11) видно, что при R®0 величина W с ®¥. Это означает, что собственная энергия точечного заряда равна бесконечности. Это приводит к серьезным недостаткам понятия "точечный заряд".

Таким образом, формулу (4.6) можно применять для анализа взаимодействия точечных зарядов, поскольку она не содержит их собственной энергии. Формула (4.7) для непрерывного распределения заряда учитывает всю энергию взаимодействия, поэтому является более общей.

При наличии поверхностных зарядов вид формулы (4.7) несколько изменяется. Подынтегральное выражение этой формулы равно и имеет смысл потенциальной энергии, которой обладает элемент заряда dq, находясь в точке с потенциалом j. Эта потенциальная энергия не зависит от того, является ли dq элементом объемного или поверхностного заряда. Поэтому для поверхностного распределения dq = s×dS. Следовательно, для энергии поля поверхностных зарядов